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Comparisons between four particle-in-cell methods for plasma simulation in one 
dimension have been made with the objectives of investigating (a) the utility of using a 
higher-order representation of the scalar potential than piecewise linear, and (b) the 
effects of smoothing the electric field as opposed to simply calculating it from the 
gradient of the scalar potential at every point. The potential is represented either as a 
continuous piecewise linear function of position or as a smooth piecewise quadratic 
function. Numerical comparisons were made using a simple test problem in which a 
Maxwellian distribution of positrons streams stably through a Maxwellian distribution 
of electrons. With various numbers of simulation particles per Debye length, time 
steps and grid spacings, the time variation of the relative stream velocity of the positrons 
and electrons was used to determine a collision time, and fluctuations in total energy and 
momentum were monitored. The investigations with this test problem indicate that the 
four methods are similar to one another with regard to collisional effects, although the 
collisional effects are usually somewhat less pronounced with the smoothed electric 
field and the piecewise linear representation of the potential. All of the methods exhibit 
a strong dependence on initial conditions and time step with this test problem. With 
regard to fluctuations of total energy and momentum, the comparison of the methods 
depends very much on the grid spacing and time step. 

I. INTRODUCTION 

Comparisons between some particle-in-cell methods for plasma simulation in 
one dimension have been made with the objectives of investigating (a) the utility 
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of using a higher-order representation of the scalar potential than piecewise 
linear, and (b) the effects of smoothing the electric field as opposed to simply 
calculating it from the gradient of the scalar potential at every point. For the 
four methods that will be discussed, the potential is represented either as a contin- 
uous piecewise linear function of position or as a smooth piecewise quadratic 
function; and, for each representation, the electric field acting on a particle is 
computed either by evaluating the negative gradient of the potential, E = -&p/,3x, 
at the position of the particle, or by interpolating -+/ax from its values at a 
finite set of points. 

We investigate two aspects of numerical simulations in one dimension with 
particle-in-cell methods: the finite-difference approximation to Poisson’s equation 
and the calculation of the electric field from the scalar potential. One of the finite- 
difference approximations to Poisson’s equation that we consider uses the central 
difference approximation for the Laplacian and an “area-weighting” procedure 
for computing the charge density due to the particles [l-3]. It has become one 
of the standard schemes, and it can be derived from a variational principle, 
Hamilton’s principle, by simply requiring the scalar potential to be a continuous 
piecewise linear function of position [4, 51. In numerical simulations that use this 
scheme for Poisson’s equation, the electric field acting on a particle is most fre- 
quently smoothed by linearly interpolating the negative gradient of the piecewise 
linear potential from its values at the points of a spatial grid. This is equivalent 
to representing the electric field by a continuous piecewise linear function that 
matches the actual values of --+/ax at the grid points. On the other hand, if the 
variational principle is used to derive the particle equations of motion as well as 
the algorithm for Poisson’s equation, then the electric field acting on a particle 
is computed by evaluating E = -+/ax at the position of the particle without 
any interpolation; this means that the field is represented as a step function. The 
total energy of the system is then conserved if the equations of motion are solved 
exactly-that is, it is conserved in the limit of zero time step.l 

Generalizations of the linear particle-in-cell algorithm for Poisson’s equation 
can be derived from the variational principle by choosing higher-order representa- 
tions of the potential than the piecewise linear one [4, 51. The higher-order scheme 
that we have used in our comparisons is a quadratic algorithm obtained from the 
variational principle by choosing the potential to be a smooth piecewise quadratic 
function of position. The algorithm involves a five-diagonal finite-difference 
approximation for the second derivative instead of the tridiagonal approximation 
of the linear case, and the procedure for allocating the charges is somewhat more 
elaborate than the “area-weighting” procedure. Because of the variational deriva- 

1 Other energy-conserving schemes have been considered recently by A. B. Langdon [6] and 
by E. L. Lindman (private communication). 
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tion, energy conservation is also not destroyed by this algorithm. That is, energy 
is conserved in the limit of zero time step if the electric field is computed by evalu- 
ating E = --+/ax exactly, thereby representing the field as a continuous piece- 
wise linear function. This corresponds to the variational prescription for the 
particle equations of motion. As in the linear case, we have in fact used two ways 
of computing the field. We have computed it from E = -L$/ax, and we have 
also interpolated it from the values at a discrete set of points. The interpolation 
that we have chosen is a novel method equivalent to representing the field by 
a smooth piecewise quadratic function that matches the actual values of --a?/& 
midway between the grid points.2 

For brevity we denote each of the four methods compared by a symbol of the 
form M/N, where M and N refer to the order of the representation of the potential 
and electric field, respectively. For M = 1 the potential is a continuous piecewise 
linear function, and for M = 2 it is a smooth piecewise quadratic function. For 
N = 0 the field is a step function, for N = 1 it is a continuous piecewise linear 
function, and for N = 2 it is a smooth piecewise quadratic function. The methods 
with a continuous piecewise linear potential are l/O and l/l, and those with a 
smooth piecewise quadratic potential are 2/l and 2/2. For methods l/O and 2/l, 
the field is calculated from E = -+/ax (step function and continuous piecewise 
linear function, respectively). For methods l/l and 2/2, the field is interpolated 
(continuous piecewise linear function and smooth piecewise quadratic function, 
respectively). 

Numerical comparisons have been made using a simple test problem in which 
a Maxwellian distribution of positrons streams stably through a Maxwellian 
distribution of electrons. For all methods the particles were advanced by means 
of the standard time-centered leapfrog scheme. With various numbers of simula- 
tion particles per Debye length, time steps and grid spacings, the time variation 
of the relative stream velocity of the positrons and electrons was used to determine 
a collision time, and fluctuations in total energy and momentum were monitored. 
For most of the results presented, the time step d t times the electron plasma 
frequency wg is 0.25, and the grid spacing d divided by the electron Debye length 
AD is unity. There are also results for A/h, = 4, and for Atw, as large as 1.0 and 
as small as 0.05. The number of electrons per Debye length, rah, , varies from 10 
to 80. On the basis of results with this problem, method l/l appears to be preferable 
over much of the parameter range that was studied, but no one method is superior 
with regard to all three diagnostics-variation of the relative stream velocity, 

2 This is a representation of the field as a quadratic spline function, and it appears to be an 
excellent way of defining quadratic spline interpolation. By taking the function to be quadratic 
between each pair of adjacent grid points, but matching the functional values midway between 
the grid points, the interpolation is quite local. The interpolation would be highly nonlocal if the 
functional values were matched at the grid points. 
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and fluctuations in total energy and momentum-over the entire range.3 The 
collisional effects observed with method l/l tended to be less pronounced than 
with the other methods: For dto, = 0.25, the collision time with method l/l 
is usually about 1.5-2 times longer than the collision times with the other methods. 
On the other hand, which method gives the smallest fluctuation in total energy 
depends strongly on the values of dtw, and O/X, . For example, with dtw, = 0.25 
and d/h, = 1, the fluctuation with method l/l is about three times smaller than 
with method l/O; but, with dtw, = 0.25 and AlAD = 4, the fluctuation is about 
ten times larger than with method l/O. The fluctuation in total energy is also 
larger with method l/l than with method l/O for Atw, < 0.13 and A/X, = 1. 
The smallest fluctuation in total energy was observed with method 2/l for 
Atw, < 0.25. Total momentum is conserved exactly with method l/l, but it is 
also conserved rather accurately with method 2/2: The fluctuation of momentum 
with method 212 for Atw, = 0.25 and A/h, = 1 is, on the average, about 27 times 
smaller than with method l/O and about 20 times smaller than with method 2/l. 

An unexpected result of our computer experiments is that the variations with 
time of the relative stream velocity between the positrons and electrons, and of 
the collision time derived from it, are strongly influenced by the initial conditions 
and the time step, even for 0.05 < Atw, < 0.25. This is true for all four methods. 
It seems likely that the influence of initial conditions and time step is much less 
important, and perhaps unimportant, for problems in which collective effects 
dominate. Nevertheless, the dependence on initial conditions and time step 
observed with this problem underscores the desirability of making numerical 
checks and comparisons with theory whenever possible. 

It was hoped that the introduction of a higher-order representation for the 
potential would lead to a significant reduction in the collisional effects. That our 
numerical results do not indicate such a reduction for the quadratic representation 
is disappointing. Nevertheless, it still may be advantageous to use a higher-order 
representation in applications to highly nonlinear problems or in two- and three- 
dimensional problems. Langdon [6] has recently suggested using a quadratic 
representation of the potential to improve the accuracy of numerical simulations. 
For applications in which it is desirable to use a large grid spacing compared to 
the Debye length, as may be the case in two- and three-dimensional simulations, 
an energy-conserving method is preferable in order to avoid a numerical instability 

3 These computations were performed with a KDF-9 computer. More extensive comparisons 
could be made with a faster computer. A complete comparison of simulation models, one that 
could unequivocally determine the most appropriate model for a given practical application, 
would consider a larger parameter range and other test problems, both stable and unstable. 
For example, beginning with various unstable particle distributions and a small electron to ion 
mass ratio, it would be valuable to compare the variations of electrostatic energy with time among 
the different methods. 
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described by Langdon [7]. Okuda [S] has observed such an instability to be absent 
from our method l/O but present with method l/l and some other methods in 
accordance with Langdon’s theory. 

The methods that we have used are described in detail in Section II. The effective 
interparticle forces and conservation of momentum are discussed in Section III 
with particular reference to methods I/O and l/l. Numerical results are presented 
in Section IV. Details of the quadratic spline interpolation are given in the 
Appendix. 

II. DESCRIPTION OF THE METHODS 

We consider a periodic one-dimensional system in which the mass and charge 
of the i-th particle are Mi and Qi , respectively. The scalar potential 9,(x, t) is 
defined with respect to a spatial grid consisting of N cells, each of length d. The 
coordinate of the n-th grid point is x, (n = 0, 1,2,..., N), and the potential is 
required to vanish at the endpoints x = x,, and x = xN : 

dxo 9 t> = dXN 3 t) = 0. (1) 

The representation of the potential is 

N-l 

&, t> = c 4) &dx>, (2) 
n=1 

where the functions gl,(x) are local basis functions for periodic piecewise poly- 
nomials that vanish at the endpoints: 

&(X0) = g&N) = 0. (3) 

Because of this boundary condition the number of basis functions is only N - 1. 
The variational form of Poisson’s equation is [4, 5, 91 

where 

(4) 

T,, = - 
i zN dx g,‘(x) g,‘(x), (44 

20 

Pn = c Qignbd 
i WI 

and yi(x) is the coordinate of the i-th particle. The matrix T is a representation 
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of d2/dx2 and the numbers P, represent the charge density due to the particles. 
For methods l/O and l/l, the functions g,(x) are linear splines (continuous piece- 
wise linear functions); for methods 2/l and 2/2, they are quadratic splines (smooth 
piecewise quadratic functions). 

For methods l/O and 2/l, the electric field, E(x, t), is the negative gradient of 
dX? t), 

N-l 

ax, t> = - 1 %dt) &a'(X) (methods l/O and 2/l), (5) 
n=1 

so that it is a step function for method l/O and a linear spline for method 2/l. 
For methods l/l and 2/2, the field is interpolated by representing it as a spline 
of the same order as that used for the potential. That is, the representation of 
E(x, t) is 

w, t> = f 4) Mx) (methods l/l and 2/2), (6) 
T&=1 

where the functions h,(x) are a local basis for periodic linear splines for method l/l 
and periodic quadratic splines for method 2/2. There are N functions h,(x) because 
they are not required to vanish at the endpoints. The coefficients u, are determined 
by matching E(x, t) to -cp’(x, t) at a set of N points yk : 

il %MYk) = - g %&‘(Yk) (k = 1, 2 ,..., w (7) 

For method l/l, the points yk are the grid points themselves, and the discontinuous 
derivative is defined by g,‘(xJ = !&imr+,[gla’(xK + .z) + gn’(xlc - E)]; for method 
212, the points yk are midway between the grid points: 

for method l/l 
for method 212. (8) 

Quadratic spline interpolation with this choice of yk is discussed in the Appendix 
and contrasted with the interpolation that would obtain with yle = xk . If yr 
were taken equal to xk in the quadratic case, then the interpolation would be 
well defined for odd values of N only, and it would be highly nonlocal. Taking 
yk = xk - (d/2), the interpolation is well defined for both odd and even values 
of N, is quite local, and closely resembles cubic spline interpolation. We did some 
experiments with a version of method 212 in which yk = XI, , and observed the 
exact momentum conservation that is expected theoretically [5]; but the degree 
of energy conservation was poor. With our standard method 212, in which 
yk = xk - @l/2), the degree of momentum conservation is good, albeit not exact, 
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and the degree of energy conservation is also good. The equation of motion for 
the i-th particle is the usual equation, 

mi;, = em< 9 t>, (9) 

for all methods, and it is solved by the standard time-centered, reversible, leapfrog 
scheme. 

The functions h,(x), g,(x), and g,‘(x), the matrix elements T,, , and the explicit 
equation relating the coefficients un and (Y, according to Eq. (7) are as follows 
for the linear and quadratic splines. 

Linear splines 

(ww - (n - 1) 4, 
hn(x) = I(l,Ll)[(n + 1) d - x], 

(n - 1) n < x < nd 
d < x < (n + 1) 4 (104 

for l<n<N---1 

hN($ = (WW - 49 O<X<Ll 
Nll4[x - w - 1) 4, (N - 1) d < X d X4; (lob) 

(n - 1) Ll < x < nd 
x = nd 
nd < x < (n + 1) Ll 
x=(n+ 1)Ll; 

Trim = U/4[--2&m + Km,, + ~n+m)l, (1 d 4 m d N 

un = -ww~%+l - %I-l), 

where 01~ = 01~ E 0. The matrix T is the tridiagonal matrix 

1 
d 

Quadratic splines 

,2 1 
l-2 1 

. 1 * . . * . * .‘l 
1 -2 

I 

(1/247(x - x&l)‘, XN-1 < x < XN 
M4 = (3/4) - (ww - (x0 + %Y212, 

(1/242)(x, - x12, 

- 

(11) 

(12) 

1); (13) 

(14) 

(W 
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(1/24(X - x,J, X,-2 < X < q-1 
h,(x) = (3/4) - (l/d2)(x - (X,-l + &)/2)2, x,el < x < x, (15b) 

(1/242)(x,+, - xy, x, < x < &+1 3 

for 2<n<N-1 

I 

(1/2d2)(x - X,+Z)~, XN-2 < x < XN-1 

h,,(x) = (3/4) - (1/d2)(x - (x,,-1 + xi,d/2)2, xj,r-1 < x < XN (15c) 
(1/24(x, - x)2, x0 < x d Xl ; 

g1w = Mx) - MX)9 (164 

&L(x) = h&4 for 26n<N---1; Mb) 

-(W2)(x - TV--2L XN-2 6 x d XN-1 

g1'(4 = 
(1/A2)(x - XN-1) + (2/d2)(x - &N-l + %f)/2), xN-, < x d XN 

-W2)(x - (x0 + x,)/2) + W2)h - 4, x0 G x < Xl 

-W2)(x2 - 4, Xl < x < x2, (1% 

W2)(x - G-2), Xn-2 < x < X,-l 

&‘(X> = -W2)(x - h-1 + x?m, X,-l d x < x, (17b) 

-W2k+1 - 4, xn d x < x,+1 ; 

for 2<n<N-1 

Trim = -(l/J L, + (1/3~)&,~+1 + &+lA + (1/6Mk,,+2 + %+2.d 

for 2<n, m<N-I, 084 

T 1.m - - Tm.1 = -@/34 L, - (1/6W&+2 + &zv-1) + (1/6d)tk2 + hn,.d; 
WI 

W9@, + u/c+1 + Uk-1) = -w4bk+, - OIk-1 + %@k,h + sk,, - sk,iV-l)l~ 

(19) 
where u. = aN , c7N+1 = q , and 01~ = 01~ = c+,,+~ = 0. 

The matrix T is the five-diagonal matrix 

-16 1 1 0 
l-6 2 1 

2-6 2 . 
0 1 2 . . * 
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Both the linear and the quadratic basis functions satisfy 

I’ + dx h,(x) = A and f h,(x) = 1. 
%I ?l=l 

III. EFFECTIVE INTERPARTICLE FORCES 

By formally solving Eq. (4), we can write the scalar potential as 

We can then write Eq. (9) as 

where Fij can be considered to be the force acting on particle i due to particle j. 
The definition of Fij is not unique because the total force on particle i is unchanged 
if to Fij is added an arbitrary quantity whose sum over j vanishes. Taking this 
arbitrariness into account, and using the above expression for CJJ(X, t) and Eqs. (5) 
and (6) for E(x, t), we can write Fij as 

N-l 

Fti = Cij + 4nQiQi C gvz'(yi) TZgm(yj) for methods l/O and 2/l, (21a) 

and 

Fi;ij = cij 

where 

+ 
N N-l 

4nQiQj C C Myi) JLmgm(y~) for methods l/l and 2/2, (21b) 
n=lm=1 

N N-l 

R,, = c c &kz'(yd Tt-,', &n = ~(YFJ 
k-1 I=1 

and 
c cij = 0. 

For method l/l, Ak,, = akn . Formulas for A,, and A;: are given in the Appendix 
for the quadratic case (method 2/2). 
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It is instructive to compare expressions for Fij appropriate to methods l/O and 
l/l in detail. In those cases the matrix T-l is given by 

T-1 = j -[cN - m> dN] ‘2 n A: m 
nm !-NV - n> m/N] 4 n 3 m. P) 

We choose cij as 

cij = -(hQiQj/NA)(yi - N42) 

both for method l/O and for method l/l. Its sum over j vanishes because we 
assume overall charge neutrality. With this choice of cii , the interparticle force Fi, 
is invariant under a simultaneous displacement of particles i and j by an integral 
multiple of d, and it satisfies Fij + Fji = 0 at all times for method l/l and whenever 
the two particles are not in the same cell of the spatial grid for method l/O. This 
definition of Fij agrees with that of Langdon [6,7]. In the following expressions 
for Fij , the particle coordinates are assumed to be in the ranges 

For method l/O, the expression for Fij is 

F.. = 4nQiQj -(Yi - Yi> + (NA/2)~ mtn 
____ 23 NA I 

-(Yi - Yj) - N(yj - X7i - O/2>, 112 = n (23) 
-CY~ - yj) - (NAP), m > n. 

For method l/l, the expression for Fij is 

-(yi - yj) + (NAP), m<n-2 

-(yi - yj) + 7 + q ( yi -Ax”+1 ) (yj - Xm), tn = n - 1 

((N/2) - l)(yi - yj), m=n (24) 

-(yi - yj) - T - G (9) (yj - X,+1), m = n + 1 

-CY~ - yj> - (NAP), m>n+2. 

The “self-force,” Fii , that has been discussed by Langdon [6, 71 for method l/O is 

Fii = -(4nQi2/A)(yi - X, - A/2) (method l/O). (25) 

Total momentum is conserved for method l/l because Fig + Fj< = 0 at all times. 
For method l/O the pairwise sum of forces is 

8rQiQj yi + yj _ x 
i 

A -~ 
A --9 

Fij + Fji = 
2 “2 1 

if m=n 
(26) 

0, otherwise. 
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The expression for the total force on the particles with method l/O is 

; c (FQ + Fji) = - FN--l z. P) c' Qi (ri - xn - $7 (27) 
I,, i 

where Qcn) is the charge in cell (n + l), that is, the sum of the charges of those 
particles between x, and x,+~ , and C; denotes a sum over only those particles 
that are in cell (n + 1). Thus, momentum would be conserved with method l/O 
if there were charge neutrality in each cell. 

IV. NUMERICAL RESULTS 

The numerical results that are presented here are for a simple test problem in 
which a Maxwellian distribution of positrons streams stably through a Maxwellian 
distribution of electrons. The algorithm for advancing the particles is the standard 
time-centered leapfrog scheme. The particles are positioned initially in electron- 
positron pairs at locations chosen at random from a uniform distribution, The 
initial electron velocities are chosen at random from the distribution 

fe(v) = (27&-1/Z exp[-W)Wd21, (284 

and the initial positron velocities are chosen at random from the distribution 

f,(u) = (27r~&l/~ exp [ - i ( ’ it”’ )“I. 

The rms thermal velocity associated both withf,(v) and withf,(u) is z+ . The mean 
velocity is zero forfe(u) and But forf,(v). 

For the results presented, the spatial grid is divided into 10 cells (N = 10). 
The collision times observed with this problem should not be altered significantly 
by increasing N, and some additional computations were done with N greater than 
10 to check this. Time and length are measured in units of the inverse plasma 
frequency w;l and the Debye length A, defined by 

copa = 4me2/m and AD = vt*g 3 (29) 

where n is the number of electrons or positrons per unit length, e2 is the square 
of the charge per particle, and m is the mass per particle. 

The duration of each computer experiment was 200 wpl. The slowing down of 
the positrons relative to the electrons during this period is used to characterize 

$31/10/1-7 
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the collisional effects. The relative stream velocity, U, , of the positrons and electrons 
is defined by 

u, = (mean positron velocity) - (mean electron velocity). 

In the continuum Vlasov approximation, which all of the numerical methods 
are intended to simulate, a, would be constant in time; this is because a uniform 
spatial distribution of positrons and electrons, with any distribution of velocities 
and zero electric field, is a stationary solution of the Vlasov equations. Variations 
in u, are due to the use of a finite number of discrete particles, a finite spacing in 
the spatial grid, and a finite time step. A collision time, T, is determined for each 
experiment by assuming 

u, - exp( - r/T) 

on the average during the period 0 < tw, , < 200. The value of 7 is computed 
from a least-squares fit of the actual values of log,(v,/v,) to a linear function 
of tw, . 

In addition to observing the variation of the stream velocity with time and 
measuring values of the collision time, the fluctuations in total energy and momen- 
tum were monitored during the period 0 < tw, < 200. For each computer 
experiment, the variations in total energy and momentum are characterized by 
quantities rlE and dP, respectively, which are defined by 

AE= f+‘;;;z; and 
1 

dp= FePPnlin, 

max + Pmin 

where Emax and Emin are the maximum and minimum values observed for the 
total energy, and Pmax and Pmin are the maximum and minimum values observed 
for the total momentum. 

We now discuss the three diagnostics-variation of the relative stream velocity, 
and fluctuations of total energy and momentum-in turn. 

Variation of the Relative Stream Velocity 

There are three major conclusions that can be drawn from our observations 
of the relative stream velocity: 

(1) The four methods studied are approximately equivalent vis a vis the 
length of the collision time, and method l/l is generally the best in this regard. 
On the average, for the experiments we have performed, the collision time is 
about 1.5-2 times longer with method l/l than with the other methods. 

(2) For all methods the behavior of the relative stream velocity and 7 
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depends strongly on the initial conditions, that is, on which random numbers 
are selected for the initial positions and velocities. 

(3) For all methods the behavior of the relative stream velocity and T depends 
strongly on the time step At that is used for advancing the particles. 

The first two points are illustrated in Fig. 1 in which TC+, is graphed versus nh, 
for the four methods. For every case represented in this figure, the value of dto, 
is 0.25, so that the ratio of plasma period to time step is 877. For each value of nX, , 
two points are plotted; these correspond to two different sets of numbers chosen 
randomly for the initial conditions. The two sets of initial conditions for any 
given value of nh, are the same for each method. The strong dependence of 7 on 
initial conditions is evident from the frequently large ratio of the values of T 

c Method l/O 

. 

Method 2/l 

IO 

r 
Method 2/Z 

FIG. 1. W.Q, vs nhD for dtw, = 0.25. The dashed straight line corresponds to 70~ - (nh#. 
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obtained for the same value of nhD . The extent of the dependence on initial 
conditions is not primarily due to failure of V, to decrease exactly exponentially 
with time. The usual behavior of v, is in fact to fluctuate about exponential decay, 
and the uncertainty in determining the values of T from fitting log,(v,/v,) to a 
linear function of tw, is generally too small to account for the variation of 7 
with initial conditions, especially for the larger values of nh, . The origin of the 
variation of T with initial conditions is not understood, but it may be the same as 
the origin of the erratic behavior observed by Montgomery and Nielson [IO] in 
their investigation of collisional effects with a one-dimensional particle-in-cell 
code. 

The maximum fluctuation of U, away from the exponential curve decreases with 
increasing nh, [or with the number of particles, since the number of electrons or 
positrons is (nh,)(d/h,)N, and N = 10 in all cases]. The maximum fluctuation 
for the cases in Fig. 1 with A/h, = 1 is between 3 % and 1 I % for nh, = 60 and 80, 
between 8 ‘A and 30 “/, for nX, = 40, and between 22 ‘A and about 300 ‘A for 
nX, = 10 and 20. 

Because of the variation of T with initial conditions, it is obviously not possible 
to specify r uniquely as a function of nXD . Nevertheless, the average variation 
of T with nX, is roughly the same for the four methods. Therefore, the collisional 
effects may be compared between these methods in a simple approximate way by 
normalizing the values of 7 for each method by a factor that makes the four sets 
of data agree as nearly as possible. This was done graphically for the data with 
A/h, = 1, and a single curve was drawn to represent the normalized data on a 
composite graph. That curve is drawn as a solid line on each of the four graphs 
in Fig. 1 with the normalization divided out. The data with A/h, = 1 is represented 
reasonably well by the solid curve in each graph. The normalization factors 
required to bring the solid curves for methods 212, 2/l and l/O into coincidence 
with the curve for method l/l are 1.4, 1.6, and 1.8, respectively. Therefore, roughly 
speaking, for A/X, = 1, the collision time for method l/l is 1.4 times longer than 
for method 2/2, 1.6 times longer than for method 2/l, and I .8 times longer than 
for method l/O. The solid curve has only been used to provide a useful but simple 
means of comparing collisional effects among the methods. It has been drawn 
to correspond to TWO N (nh,)2 for nXD 2 50, and the dashed straight line represents 
the extension of that dependence on nh, for smaller values of nh, . The (nh$ 
dependence is that expected for Maxwellianization of a single-species, one- 
dimensional plasma based on kinetic theoretical considerations [lO-121. It may 
be expected that TWp vary as the first power of d, for large values of nh, due to 
effects of the spatial grid [13] or the fact that there are two distinct species [12]. 
Our data are inadequate for testing the detailed functional dependence of TW, 

on nh, . 
Increasing A/h, appears to increase 7, as in indicated by the encircled points 
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0.6 
a .+.05, o u.At=.lO, o qAt=.25 

d 

0.5 I.7 

FIG. 2. (a) v,/ut vs tw, with Method l/O for nh D = 40 and A/b = 1. (b) u,/ot vs tw, with Method 
l/l for nh~ = 40 and d/h~~ = 1. (c) u,/vt vs to, with Method 2/l for nA, = 40 and A/AD = 1. 
(d) v,/v~ vs tw, with Method 212 for nhD = 40 and A/X= = 1. 

TABLE I 
Variation of 7 with Time Step for nAn = 40 and A/AD = 1 

Atwp 
7% 

Method l/O Method l/l Method 2/l Method 2/2 

0.25 272 465 292 214 
0.10 379 589 258 188 
0.05 411 322 480 361 
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in Fig. 1 for nAD = 15. Those points lie above the solid curve by roughly the same 
factor for all four methods. 

The strong dependence of U, on the size of the time step is illustrated in 
Figs. 2(a-d), in which U,/Q is plotted on a logarithmic scale versus tw, for nX, = 40, 
d/h, = 1, and dtw, = 0.25, 0.1, and 0.05. The initial conditions are identical for 
all cases. The values of 7wP for those curves are listed in Table I. The fact that v, 
is so sensitive to At for such small values of At with all methods is evidence of a 

Method l/O 

AE 

IO’ 
8 Method l/l 

Method 2/l Method 2/Z 

FIG. 3. AE vs nhD for Atw, = 0.25. 
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large error in integrating the particle equations of motion. The error may be 
largely a result of the dependence of v, on initial conditions, which could amplify 
errors in integrating the equations of motion made at each time step, including 
errors made at t = 0 when starting the leapfrog algorithm. At any rate, the finite- 
difference integration of the equations of motion evidently does not provide an 
accurate representation of the solution of the equations of motion for even modest 
times. That the finite time step significantly influences the results with this problem 
is further indication that detailed theoretical analysis of numerical simulation 

F Method l/o 

AP 

AP=O 
for Method l/l 

A k 
Method 2/l 

P 
0 l 

Id’ 

0 

AP= 1.2 (n&J’ 

Method 212 

FIG 4. AP vs nhD for Atw, = 0.25. 
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models must be based on the difference equations in time that are actually used 
[13, 141. 

The dependence of results on initial conditions and time step that we have 
described has been for a problem in which collisional effects are important, 
whereas the major purpose of these computer models is to aid in understanding 
situations in which collective effects dominate. The success that has been achieved 
with particle-in-cell methods in describing unstable plasmas, in which collective 
effects do dominate, indicates that the methods are useful when the number of 
particles is large enough that collisional effects are very small. Our observations 
underscore the desirability of making numerical checks, such as varying the time 
step and initial conditions, and of comparing the results with other knowledge, 
such as theoretical predictions, whenever possible. 

Fluctuations in Energy and Momentum 

The fluctuations in total energy and momentum are graphed in Figs. 3 and 4, 
respectively, for the same computer experiments that are represented in Fig. 1. 
The straight lines are drawn to represent the data with d/A, = 1, and the value 
of Atw, for all of the data is 0.25. For O/X, = 1, AE and AP are approximately 
proportional to (r&)-l for all methods. For Atw, = 0.25 and A/h, = 1, the 
energy fluctuations are smallest for method 2/l, about equal for methods l/l 
and 2/2, and largest for method l/O. However, for the same time step, A& = 4, 
and nX, = 15, the energy fluctuations are much smaller for the energy-conserving 
methods and much larger for the other methods. In that case, AE is smallest 
for method 2/l, next smallest for method l/O, and rather large for methods l/l 
and 212. 

Total momentum is exactly conserved for method l/l. Fluctuations in total 
momentum are comparable for methods l/O and 2/l, and they are much smaller 

TABLE II 

Variation of AE with Time Step for & = 40 and A/hD = 1 

AE 

Atw, Method l/O Method l/l Method 2/l Method 212 

1.00 1.01 x 10-l 
0.75 9.40 x 10-a 
0.50 8.85 x 10-a 4.45 x IO-3 3.33 x 10-a 8.00 x 1O-3 
0.25 1.41 x 10-a 4.60 x 1O-3 1.74 x 10-a 4.27 x lo-% 
0.20 4.07 x 10-a 6.58 x 1O-s 9.55 x 10-d 4.75 x 10-n 
0.10 2.91 x 10-s 3.55 x 10-S 2.12 x 10-d 3.66 x 1O-s 
0.05 1.86 x 10-s 2.90 x lo-3 8.2 x 10-s 2.87 x 1O-3 
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TABLE III 

Variation of AP with Time Step for nXD = 40 and A/AD = 1 

AP 

Ah, Method l/O Method 2/l Method 212 

0.50 3.73 x 10-a 2.39 x 1O-2 8.7 x lo-& 
0.25 3.96 x 1O-2 1.98 x 1OW 1.45 x 10-Z 
0.20 3.40 x 10-z 4.61 x 1O-2 1.26 x 1O-3 
0.10 3.97 x lo-8 1.66 x 10-Z 1.07 x 10-a 
0.05 3.02 x 1O-2 5.18 x 1OP 8.7 x 1O-4 

for method 212. Increasing A/X, from 1 to 4 leads to a decrease in AP for method 212 
and an increase for methods l/O and 2/l. 

The variation of AE and AP with time step for nh, = 40 and A/AD = 1 is 
shown for a particular set of initial conditions in Tables II and III, respectively. 

V. CONCLUSION 

Our investigation of four particle-in-cell plasma simulation methods has 
indicated that they are similar to one another with regard to collisional effects, 
although the collisional effects are usually somewhat less pronounced with 
method l/l. All of the methods exhibit a strong dependence on initial conditions 
and time step with the test problem that was used. With regard to fluctuations of 
total energy and momentum, the comparison of the methods depends very much 
on the grid spacing and time step. For sufficiently large grid spacing or small 
time step, the energy-conserving methods are preferable in that they produce 
smaller fluctuations in total energy. The energy-conserving methods are also 
preferable from the standpoint of numerical stability when the grid spacing is 
sufficiently large [7,8]. From our results, it does not seem generally advantageous 
to use a representation of the scalar potential that is more complicated than 
piecewise linear, although it still may be worthwhile to do so for problems in 
which collective effects dominate. 

APPENDIX: QUADRATIC SPLINE INTERPOLATIONS 

Here we exhibit the properties of quadratic spline interpolations. We rewrite 
Eq. (7) in the form 

CA lcn~‘n = - qJ’cYd, (AlI 
R 
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where 
Ak, = MYk). WI 

The solution of this equation, 

gives the interpolation formula 

E(x) = - 1 F’(Yk) Wk(X), 

(A3) 

(A4) 
k 

where 

(A5) 

For J’, = XI, - (d/2), as in this paper, the matrix A is given by 

Am = (1/8)(6&m + 8k,n--1 + 8k,n+l + 81,khV.n + 6N,k’%,n) 646) 

or 

The inverse of A is given by 

A;; = C 
ak-N-n + an-k, n<k 
ak-n + an-N-k 

> n 2 k, 
(A7) 

a = -3 - 2 q/z and (l/C) = -(3/4)(a-2 + a2+) - (17/4)(a-r + a1-N). 

(Note the relations a2 + 6a = a-2 + 6a-l = - 1.) A;: alternates in sign and 
decreases in magnitude rapidly as a function of II as 1 n - k j increases away 
from zero. (A;i/A-l n+l,k z a for large N and n z k.) Therefore, W&) is a strongly 
local function of x. As an example, I+(X) is graphed in Fig. Al for k = 5 and 
N = 9. For comparison, the analogous function for the usual cubic spline inter- 
polation ( yk = x,) [ 151 with N = 10 is graphed in the same figure. 
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FIG. Al. w,(x) vs x/A for N = 9 (solid line), and the analogous function for cubic spline 
interpolation with N = 8 (dotted line). 

In contrast, if we take yk = xk , the matrix A is given by 

A,, = WWLz + &c+~,n + ~dLJ 

or 

A=; 

1 
1 1 

. . . . . . . . . . ‘1 
0 . . . 0 ‘1 

G48) 

This matrix does not have an inverse unless N is odd. If N is odd, the inverse is 
given by 

A,; = 1 (--l)n+k, n d k 
-(- l)n+k, n > k, 649) 

which makes W&X) a highly nonlocal function that is unsuitable for interpolation. 
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